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Chapter two

2.1 The general conduction equation

Consider the one-dimensional system shown in Figure 1-6. If the system is in a steady
state, i.e., if the temperature does not change with time, then the problem is a simple
one, and we need only integrate Equation (1-1) and substitute the appropriate values
to solve for the desired quantity. However, if the temperature of the solid is changing
with time, or if there are heat sources or sinks within the solid, the situation is more
complex. We consider the general case where the temperature may be changing with
time and heat sources may be present within the body. For the element of thickness
dx, the following energy balance may be made:

Energy conducted in left face + heat generated within element = change in internal
energy + energy conducted out right face These energy quantities are given as
follows:

Energy in left face=q, = —kA g—i

Energy generated within element=qAdx

- Qoen = A dX

/

q.\; +

|<— X —b d.\'l-t-—

Figure 1-6 Elemental volume for one-dimensional heatconduction analysis.

Change in internal energy=pcA % dx

Energy out right face = g, 4, = —kA or
0x)ytdx
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= —a g+ 5 (k52) )

where

¢ = energy generated per unit volume, W/m
¢ = specific heat of maternial, J/kg - °C
p = density, kg/m’

Combining the relations above gives

—kAZ + GAdx = pcAS dx — Ak 2+ = (kS7) dx|

ax
or
d oT . oT
a(ka)i-q—pCE 1.8

This is the one-dimensional heat-conduction equation. To treat more than one-
dimensional heat flow, we need consider only the heat conducted in and out of a unit
volume in all three coordinate directions, as shown in Figure 1-7a. The energy
balance yields

dE
Ax T 9y T 4; t Qgen = Qx+ax + Qy+ay + Qz+az t at

And the energy quantities are given by
Qx = —kdydz%
Gxvar = — |k 5+ 2= (k) dx| dydz
ay = —kdxdz 3.

aT a

Qyray = — [ka + o (k g—;) dy] dxdz

aT
q; = —kdxdyz
aT 8 (, T
Qyody = — [k Z+2 (k ) dz] dxdy
dgen = qdxdydz
dE

aT
e pcdxdydza
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Figure 1.7 Elemental volume for three-dimensional heat-conduction analysis: (a) cartesian

coordinates; (b) cylindrical coordinates; (c) spherical coordinates.

So that the general three-dimensional heat-conduction equation is

d (, T a (, T a (, 0T . oT
3 (e5) + 55 (e5y) + 5 (k) +d = e 1.9
For constant thermal conductivity, Equation (1.9) is written
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ax2  dy?  8z2  k adt

Where:

_ Heat conducted
Heat stored

i

k. o .
a=_"is the thermal difusivity of material, m?/s.
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1.9a

The larger the value of a, the faster heat will diffuse through the material. This may
be seen by examining the quantities that make up a. A high value of a could result

either from a high value of thermal conductivity, which would

indicate a rapid

energy-transfer rate, or from a low value of the thermal heat capacity pc. A low value
of the heat capacity would mean that less of the energy moving through the material
would be absorbed and used to raise the temperature ofthe material; thus more energy
would be available for further transfer. Thermal diffusivity a has units of square

meters per second.

Equation (1.9a) may be transformed into either cylindrical or spherical coordinates by

standard calculus techniques. The results are as follows:

Cylindrical coordinates: see figure 1.9b

10 oT 1 0 oT 0 oT . oT
(k) s (k55) + 5 (k5) +d = pe

For constant thermal conductivity,

92T | 10T 162T+62T g 10T
orz " ror r2092  9z2 k adt

Spherical coordinates: see figure 1.9¢

12 (220 L3 (00 L0 (i g2t g =
rzar(kr ar +r25in296(2) kac) +r25in9 a0 ksmeae taq=pc

For constant thermal conductivity,

1 92 1 9%T 1 0

10T
— — T — —
r or? ( ) + r2sin?20 992  r2sin6 90

. 0T q_
(Sln660)+k_a6t
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Many practical problems involve only special cases of the general equations listed
above. As a guide to the developments in future chapters, it is worthwhile to show the
reduced form of the general equations for several cases of practical interest.

Steady-state one-dimensional heat flow (no heat generation):

2
T _ o 1.10

dx?

Steady-state one-dimensional heat flow in cylindrical coordinates (no heat
generation):

et | Idl 111
dr?  rdr
Steady-state one-dimensional heat flow with heat sources:
d*T g
—+-=0
a2 Tk 112

Two-dimensional steady-state conduction without heat sources:

2

$T+3T_U
ax2 o oayr 1.13

Example: A 1 m thickness wall made from a material (cp=4000J/kg.k, p=1600 kg/m",
k=40 W/m k). Temperature distribution is given by T(x) = a + bx + cx?, a=900°C,
b=-300 °C/m, ¢=-50 *C/m’, A=10 m?, ¢=1000 W/m".

Determine:

1. Rate of heat transfer entering and leaving the wall.
2. Rate of storing energy within the wall.
3. Rate of change of temperature at x=0.25 m and x=0.5 m.

Solution:

Known: Temperature distribution T(x) at an instant of time t in a one-dimensional
wall with uniform heat generation.

1. Recall that once the temperature distribution is known for a medium, it is a
simple matter to determine the conduction heat transfer rate at any point in the
medium, or at its surfaces, by using Fourier’s law. Hence the desired heat rates
may be determined by using the prescribed temperature distribution with Equation
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2.1. Accordingly,

Schematic:

A=10m? g = 1000 W/m*
I I k=40 W/m-K
| | p=1600 kg/m’
: : ¢, = 4 klikgK
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1. Recall that once the temperature distribution is known for a medium, it is a simple
matter to determine the conduction heat transfer rate at any point in the medium, or at
its surfaces, by using Fourier’s law.

G = ¢,0) = — kA2

Ix*=0 "

—KA(b+ 2¢x),_

G = — bkA = 300°C/m X 40 W/m + K X 10 m* = 120 kW
Similarly,
d
Gou = QX(L) = _kAIﬂsz = kA(b+ ZCX)X:L
Gout = —(b+ 2cL)kA = —[ — 300°C/m

+ 2(—50°C/m? X 1 m] X 40 W/m - K X 10 m? = 160 kW

2.apply energy balance on the wall:
j—?in + E:g;_ Eom = J';—':—'st
where E'g = ¢AL, it follows that
'E;l = -E:m o E'g_ Euul = qin : 5 QAL - quul

E,= —30kW
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at pcp 0x2  pcp

From the prescribed temperature distribution, it follows that

9’T 0 (aT)
ax2  ox \ox

= :—x(b +2¢x) = 2¢ = 2(=50°C/m?) = —100°C/m?

.5'_T= 40 W,’m . K % (_loooC/mE}
dt 1600 kg/m® x 4 kJ/kg - K
1000 W/m?®

1600 kg/m® X 4 k)/kg - K

%= —6.25 X 10-°C/s + 1.56 X 10~*°C/s

=—4.69 X 107%°C/s
2.2 Study state conduction in one dimension:

2.2.1 The Plane Wall

a. temperature distribution

F  FT  FT § 1ar

ax2 * ay? i az* +E_a at
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FIGURE 2.1 Heat transfer through a plane wall. (a) Temperature distribution. (b)

Equivalent thermal circuit.

Assumption:

Temperature varies with x-direction only no heat generation. So, the general equation

1s reduces to:

9°T _

dx?
First integration:

oT
—=C
0x 1

Second integration:
T(X) = Clx + CZ

this is the general solution

C; and C, are constant of integration.

Boundary condition:
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To obtain the constants of integration, C; and C,, boundary conditions must be
introduced. We choose to apply conditions of the first kind at x= 0 and x= L, in
which case

no) =1, and n) =T,
Applying the condition at x = 0 to the general solution, it follows that
T'l T C-z

Similarly, at x = L,
T,=CGL+G=CL+ T,

in which case

-Ts.z I T::l

r G

Substitute in general solution:

TW =(Ty, — L) 7 + T 22

the heat transfer rate:

o= -I-H 1) 23

b. Thermal resistance
The thermal resistance for conduction is:
_ Ts.] o };2 — i

Rr.:und = T = k_A" 2.4

The thermal resistance for convection is:

2.5

Circuit representations provide a useful tool for both conceptualizing and quantifying
heat transfer problems. The equivalent thermal circuit for the plane wall with
convection surface conditions is shown in Figure 2.1b. The heat transfer rate may be
determined from separate consideration of each element in the network. Since gx is
constant throughout the network, it follows that
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In terms of the overall temperature difference, T.., — T..,, and the fotal thermal
resistance, Ry, the heat transfer rate may also be expressed as
Ty — Tx,z
qx Rlul
Because the conduction and convection resistances are in series and may be
summed, it follows that

- b L1
Ra=32" 1A A

2

2.1.2 The Composite Wall:
a. Material in series:

Equivalent thermal circuits may also be used for more complex systems, such as
composite walls. Such walls may involve any number of series and parallel
thermalresistances due to layers of different materials. Consider the series composite
wall of Figure 2.2. The one-dimensional heat transfer rate for this system may be
expressed as

1 lﬁ
Jl‘.l \ T2

T
\ Tﬂ
T T T 4-—[.&—;--1—[‘3—»4—[‘:—-
Hot fluid ky kg ke T
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FIGURE 2.2 Equivalent thermal circuit for a series composite wall.
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